

2013 Marking Scheme

Grade Awarded	Mark Required (/100)	% candidates achieving grade
A	73+	30.7%
В	60+	23.7%
С	47+	22.5%
D	43+	9.2%
No award	< 43	13.8%

Section:	Multiple Choice		Extended Answer	
Average Mark:	26.1	/40	35.1	/60

	2013	3 Hi	gher Chemistry Marking Scheme	
MC Qu	Answer	% Pupils Correct	Reasoning	
1	A	84	 A Calcium is a metal and chlorine is a non-metal ionic conductor when molten B Nitrogen and chlorine are both non-metals covalent non-conductor C Phosphorus and chlorine are both non-metals covalent non-conductor D silicon and chlorine are both non-metals covalent non-conductor 	
2	С	60	\blacksquare A Electron Arrangements: $Ca^{2+} = 2,8,8$ and $O^{2-} = 2,8$ \blacksquare B Electron Arrangements: $Ca^{2+} = 2,8,8$ and $Br^- = 2,8,18,8$ \boxdot C Electron Arrangements: $Na^+ = 2,8$ and $O^{2-} = 2,8$ \blacksquare D Electron Arrangements: $Li^+ = 2$ and $F^- = 2,8$	
3	В	35	 ☑ A Iron is lower down ECS than zinc ∴ no displacement reaction takes place ☑ B Tin is higher up ECS than silver ∴ displacement reaction takes place ☑ C Copper is lower down ECS than hydrogen ∴ no displacement reaction takes place ☑ D Lead is lower down ECS than magnesium ∴ no displacement reaction takes place 	
4	В	62	Silver nitrate + sodium chloride	
5	D	62	 Image of the second of the seco	
6	A	69	 ☑A both factors would increase the rate of reaction ☑B an increase in activation energy would decrease the rate of reaction ☑C an increase in particle size would decrease the rate of reaction ☑D a decrease in surface area of reactants would decrease the rate of reaction 	
7	D	37	NB: All the alkali has reacted but only half of the acid has reacted ⊠A Greater volume of acid would result in the temperature rise being smaller ⊠B More acid but additional alkali needed to increase the temperature rise ⊠C Same temperature rise as same number of moles of OH ⁻ ions are present ⊠D Doubling of moles of OH ⁻ ions ∴ remaining acid reacts and temp rise increases	
8	С	66	 A Poisoning of a catalyst reduces the surface activity as sites are blocked up B Impurities must be removed from catalyst to maintain the catalyst's activity C Catalytic convertor is solid and reactants molecules are gases (heterogenous) D Heterogenous catalysts adsorb reactant molecules during reaction 	
9	В	43	 For a reaction to take place at room temperature: reaction is likely to have a small activation energy reaction is likely to be exothermic 	
10	A	81	$1 \text{mol } CH_{3}OH = (1 \times 12) + (4 \times 1) + (1 \times 16) = 12 + 4 + 16 = 32g$ $1 \text{mol } CH_{3}OH = -727 \text{ kJ} = 32g$ $= -72.7 \text{ kJ} = 32g \times \frac{-72.7}{-727}$ $= 3.2g$	
11	В	74	 ☑A Electronegativity of lithium = 1.0 ☑B Electronegativity of chlorine = 3.0 ∴ greatest attraction for bonding electrons ☑C Electronegativity of sodium = 0.9 ∴ smallest attraction for bonding electrons ☑D Electronegativity of bromine = 2.8 	

12	С	59	 A potassium atom (2,8,8,1) is larger than potassium ion (2,8,8) B Chloride ion (2,8,8) is not smaller than a chlorine atom (2,8,7) C Sodium atom (2,8,1) is larger than a sodium ion (2,8) O cover atom (2,6) is not larger than an axida ion (2,8)
13	D	69	 Considered and the second secon
14	С	50	 A Metal elements contain metallic bonding B All elements contain Van der Waals' bonding between atoms C Atoms in elements must have same electronegativity so bonds cannot be polar D All molecular elements contain non-polar covalent bonding e.g. H₂, N₂, O₂, P₄
15	D	63	 ▲ A boron has a melting point of 2075°C ∴ covalent network structure ▲ B carbon (diamond) sublimes at 3825°C ∴ covalent network structure ▲ C silicon has a melting point of 1414°C ∴ covalent network structure ▲ D sulphur has a melting point of 115°C ∴ molecular covalent structure
16	D	36	Compounds containing -OH hydroxyl groups have hydrogen bonding between molecules hydrogen bonding brings molecules closer together. Compound D has two -OH hydroxyl groups and is more viscous due to the additional hydrogen bonding compared to the other compounds which only have one -OH group per molecule.
17	A	50	4mol of Br ⁻ ions in MgBr ₂ \therefore 2mol of MgBr ₂ formula units \therefore 2 mol of Mg ²⁺ ions 3 mol of Mg ²⁺ ions in total = 2 mol Mg ²⁺ ions in MgBr ₂ + 1 mol Mg ²⁺ ions in MgSO ₄ 1 mol of Mg ²⁺ ions in MgSO ₄ \therefore 1 mol MgSO ₄ formula units \therefore 1 mol SO ₄ ²⁻ ions
18	A	70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
19	С	71	 A Dehydration: Water is removed and C=C double bond formed on molecule B Reforming: Straight hydrocarbons rearrange into branched or ring structures C Cracking: Larger saturated molecules split in small molecules (some unsaturated) Addition Polymerisation: Unsaturated molecules join to form polymer
20	В	57	 ☑A this molecules has same structure (2-methylpent-2-ene) ∴ not an isomer ☑B this molecules has different structure (3-methylpent-2-ene) ∴ an isomer ☑C this molecules has same structure (2-methylpent-2-ene) ∴ not an isomer ☑D this molecules has same structure (2-methylpent-2-ene) ∴ not an isomer
21	D	82	 A hexanal has a formula of C₆H₁₂O B hexan-2-ol has a formula of C₆H₁₄O, usually written as C₆H₁₃OH C hexan-2-one has a formula of C₆H₁₂O hexanoic acid has a formula of C₆H₁₂O₂, usually written as C₅H₁₁COOH
22	В	73	CH ₃ CH ₂ CH ₂ COOCH ₂ CH ₃ carboxylic acid side (2 nd name in ester) 4 carbon carboxylic acid = -butanoate Ester name = ethyl butanoate
23	D	48	 A both molecules contain a C=C double bond and undergo addition polymerisation B both molecules contain a C=C double bond and undergo addition reactions C phenylethene C₈H₈ contains 6 less hydrogens than cyclohexylethene C₈H₁₄ D both molecules contain one C=C double bond and reacts with same moles of bromine

24	В	79	$\begin{array}{c ccccccc} H & H & H & H & H & H \\ H & H & H & H &$	
25	С	68	 A compound 2 (butan-2-ol) is a secondary alcohol and oxidises to form an ketone B compound 2 (butan-2-ol) is a secondary alcohol and oxidises to form an ketone C Both alcohols are primary alcohols and oxidise to aldehydes then carboxylic acids C compound 3 (2-methylpropan-2-ol) is a tertiary alcohol and does not oxidises 	
26	A	70	$\begin{array}{c} O \\ \\ -C - OH + H - O - \\ carboxyl group \end{array} \xrightarrow[at join]{} condensation \\ + H - O - \\ at join \end{array} \xrightarrow[at join]{} condensation \\ - C - O - \\ ester link \end{array}$	
27	D	65	Polyamides are formed by the condensation polymerisation of diamines (with two amine groups) and diacids (with two carboxyl groups) Polyesters are formed by the condensation polymerisation of diols (with two hydroxyl groups) and diacids (with two carboxyl groups)	
28	В	71	 A Hardening of vegetable oils involves the addition of hydrogen across C=C bonds B Cured polyester resins involves the cross linking to give the necessary strength C Production of aromatic compounds from naphtha is called reforming C Cross-linked materials are not thermoplastic 	
29	A	83	 A oils are liquids and have a higher proportion of unsaturated molecules B fats contain high proportion of saturated molecules, oils are more unsaturated C oils are liquids at room temperature O oils are liquids at room temperature and are more unsaturated 	
30	A	36	 A Dipeptide shown has middle and right amino acid joined in correct order B Amino Acid with R group = -CH₃ should be left side of dipeptide formed C Amino Acids shown in dipeptide are not next to each other in tripeptride X D Amino Acid with R group = -CH(CH₃)₂ should be right side of dipeptide formed 	
31	С	83	 A labour costs are fixed costs due to pay deals to control the increase in pay B land rental costs are fixed in long term rental agreements C raw material costs are variable as the cost of raw materials fluctuates C cost of plant construction are fixed in a contract 	
32	A	83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
33	A	82	FactorRate of Forward ReactionsRate of Back ReactionChange afterReaction already at equilibrium soReaction already at equilibrium so	
34	С	68	two hoursremains unchanged two hours laterremains unchanged two hours later■ A increase in pressure would favour the forward reaction to reduce gas volume■ B same no. of moles of gas on either side of arrow pressure has no effect■ C increase in pressure would favour the reverse reaction to reduce gas volume■ D same no. of moles of gas on either side of arrow pressure has no effect	

35	D	65	 A pH of sodium hydroxide is higher than ammonia solution due to full dissociation. B sodium hydroxide has a higher gfm. This means a higher mass of solute present. C sodium hydroxide has higher conductivity due to full dissociation. D same number of moles of hydrochloric acid neutralised.
36	С	81	$[H^{+}] = \frac{10^{-14}}{[OH^{-}]} = \frac{10^{-14}}{10^{-1}} = 10^{-13} \text{ mol } l^{-1} \therefore \text{ pH} = 13$
37	D	62	 ☑ A 1mol I⁻¹ HCl has pH=0 as it is a strong acid ☑ B NaCl solution has pH=7 as it was made from strong acid and strong alkali ☑ C Na₂CO₃ solution has pH>7 as it is made from strong alkali and weak acid ☑ D CH₃COOH is a weak acid and has pH between pH=1 and pH=7
38	В	63	New York Content is formed from passage of 48250C through silver (I) nitrate ダB 1mol silver is formed from passage of 96500C through silver (I) nitrate New York Content from passage of 193000C through copper (II) sulphate New York Content from passage of 386000C through copper (II) sulphate
39	В	 This graphs shows the relationship between chemical reaction rate and temp B Rate of radioactive decay does not change when temperature is varied C This graph represents the activity of an enzyme against temperature D This graph shows an increase in rate when temperature is increased 	
40	С	76	 A This equation shows neutron capture B This equation shoes nuclear fusion C This equation shows nuclear fission D This equation shows alpha particle capture followed by neutron emission

2	2013 Higher Chemistry Marking Scheme			
Long Qu	Answer	Reasoning		
1a	Reforming	Reforming rearranges straight chain hydrocarbons into branched chain hydrocarbons or cyclo-ring & aromatic hydrocarbons. The number of carbons in the molecule remains the same.		
1b	2,2,4-trimethylpentane	1.Identify the longest chain:5 carbons-pentane2.Identify the sidechains: $3 \times -CH_3$ -trimethylpentane3.Lowest numbering system selected $-CH_3$ on C_2 , $C_2 \& C_4$ 2,2,4-trimethylpentane		
1b	2,2,4-trimethylpentane	2,2,4-trimethylpentane Side Groups on C2, C2 and C4 Three methyl- CH3 side groups Five Carbons on Main Chain Single bonds in main chain		
1c	Branches	Reforming increases the branches on molecules which keeps the molecules in petrol further apart to prevent auto-ignition of petrol before the spark.		
1d	Toxic	Methanol is a very toxic compound which can cause blindness and death.		
2a	purple \rightarrow colourless	This reaction is self-indicating as purple permanganate ions react with oxalic acid and turn into colourless manganese ions.		
2b(i)	58°C	rate = $\frac{1}{\text{time}}$ = $\frac{1}{25s}$ = 0.04 s ⁻¹ From graph: if rate = 0.04s ⁻¹ then temperature = 58°C		
2b(ii)	Colour change is too slow	At temperatures below 30°C, the colour change is too gradual to calculate a consistent end point.		
2c	Collisions have more energy products are formed: a) angle of collision b) energy of collision			
За	3AI + 3NH4ClO4 ↓ AI2O3+AICI3+3NO+6H2O	$\begin{array}{rcl} AI &+& NH_4CIO_4 &\to& AI_2O_3 &+& AICI_3 &+& NO &+& H_2O \\ && & & & & & & & & & & & & & & & & &$		
3b	0.255	$1 \text{ mol } Al_2O_3 = 102g = 6.02 \times 10^{23} \text{ formula units}$ But 2 Aluminium ions per formula unit 1 mol $Al_2O_3 = 102g = 12.04 \times 10^{23} \text{ Al}^{3+} \text{ ions}$ $\frac{3.01 \times 10^{21}}{12.04 \times 10^{23}} \times 102g \qquad 3.01 \times 10^{21} \text{ Al}^{3+} \text{ ions}$ $= 0.255g$		
4 a(i)	$K(g) \rightarrow K^{+}(g) + e^{-}$	1 st Ionisation Energy: The energy required to remove one mole of electrons from one mole of atoms in the gaseous state.		
4a(ii)	Outer electron is further from nucleus	Potassium atoms are bigger than chlorine atoms so the outer electron is further from the nucleus of potassium than an outer electron in a chlorine atom and the nucleus of the atom has less of a hold on electrons further from the nucleus		
4b	8	Fatty acids contain carboxyl -COOH groups which react with hydroxyl -OH groups to form an ester group. Sucrose contains 8 hydroxyl -OH groups.		
5a	N=C-C=N	Carbon is in group 4, has a valency of 4 and makes 4 bonds Nitrogen is in group 5, has a valency of 3 and makes 3 bonds		

56	Answer to include:	Working method to remove unreacted carbon dioxide	Working method to collect gas	
90		e.g. bubbling gases through sodium hydroxide solution	e.g. syringe to collect gas or collection of gas over water	
6a	Answer to include:	Trichloromethane is a polar molecule a permanent dipole attractions with the soluble. Tetrachloromethane is a non-p the molecule and is insoluble in polar w	and there are permanent dipole to polar water molecules making it polar molecule due to the shape, of vater.	
6b	absorbs harmful u.v.	Ozone absorbs harmful ultraviolet rad can cause skin cancer. Ozone is broker	liation from the sun. U.V. radiation a down by CFCs (chlorofluorocarbons)	
7α	One from:	Tollen's Reagent Benedict's Solution Acidifie Fehling's Solution Acidifie	ed Dichromate solution hot copper (II) oxide	
71				
7 D(i)	8			
7b(ii)	oxidation	Phenylethanal is an aldehyde and is converted into phenylethanoic acid (a carboxylic acid) by oxidation		
8α		Take a two carbon segment of the mai between the two carbons.	n chain and place a C=C double bond	
	$\langle 0 \rangle \langle 0 \rangle$			
8b	photocopiers and laser printers	Polyvinylcarbazole is a photoconductive photocopiers and laser printers.	e polymer and which can be used in in	
9a	more -OH groups more hydrogen bonding between molecules	Hydrogen bonding brings molecules clo two -OH groups per molecule which is molecules closer together.	oser together. Ethane-1,2-diol has much more effective at bringing	
9b	2-methylbut-2-ene	Draw 2-methylbutane-2,3-diol in same format as example diol in question H ₃ C H H-O-C-C-O-H H ₃ C CH ₃ 2-methylbutane-2,3-diol	Work out the structure of the original alkene used to give 2-methylbutane-2,3-diol H ₃ C H ₃ C H ₃ C C=C H ₃ C CH ₃ 2-methylbut-2-ene	

9с	benzene-1,3-dicarboxylic acid	Carboxyl groups are separated by two carbons on the benzene ring • C1 has first carboxyl group • C3 has 2 nd carboxyl group to give lowest numbering system
10a(i)	Amine	Amine functional groups have the -NH $_2$ group in their structure
10a(ii)	Diagram showing:	$HO-CH_2-CH_2-N$ CH_2-CH_3 CH_2-CH_3
10b	25min	Anaesthetic X resembles procaine on the left side ∴ 7min duration must be starting point in calculation of duration of X Anaesthetic X has N-containing ring structure: Mepivacaine has the same N-containing ring structure and has a duration 18 min longer than lidocaine which lacks the n-containing ring (and looks like procaine too) ∴ Anaesthetic X should have a duration 18 minutes longer than procaine = 7 + 18 min = 25 min
11a	Condensation or esterification	Condensation reactions involve two smaller molecules joining together and a small molecule (usually water) removed as the join together. In this reaction al -OH group in salicylic acid and the CH ₃ -CO-O- group from ethanoic anhydride join together to make aspirin with CH ₃ COOH removed at the joining point.
11b	40.0	gfm salicylic acid $C_7H_6O_3 = (7\times12)+(6\times1)+(3\times16) = 84+6+48 = 138g$ gfm aspirin $C_9H_8O_3 = (9\times12)+(8\times1)+(4\times16) = 108+8+64 = 180g$ $C_7H_6O_3 + C_4H_6O_3 \longrightarrow C_9H_8O_4 + C_2H_4O_2$ 1mol 138g 5.02g $180g \times {}^{5.02}/_{138}$ =6.58g (100% theoretical) % yield = $\frac{actual}{theoretical} \times 100 = \frac{2.62}{6.58} \times 100 = 40.0\%$
11c	H⁺ ions in water and salicylate ions join up to form molecules	Sodium salt of aspirin is made from a strong alkali (sodium hydroxide) and a weak acid (salicylic acid). When dissolved in water, the salicylate ions pair up with H ⁺ ions in water to form molecules of salicylic acid. The OH ⁻ ions remain and make the pH alkaline.
12a	0 +1	$^{40}_{19}$ K $\rightarrow ~^{40}_{18}$ Ar + $^{0}_{+1}$ e
12b	2.52×10 ⁹	If 75% of ⁴⁰ K has decayed then 25% of ⁴⁰ K must remain Percentage Time 100% 0 50% 1.26×10 ⁹ years 25% 2.52×10 ⁹ years
13a(i)	only partially dissociated	weak acids only partially dissociate to release H ⁺ ions into solution
13a(ii)	move to right	NH3 dissolves in water to form an alkali. Alkali will neutralise H ⁺ ions which removes a product from the equilibrium. Equilibrium will shift to right to replace missing product.

		no. of mol = Volume = 0.079litres Molar Volume = 24 litres mol ⁻¹ = 0.00329mol		
		FeS + 2HCl → FeCl2 + H2S		
13b	0.289g	1mol 1mol		
100		0.00329mol 0.00329mol		
		1mol FeS = (1x55.8) + (1x32.1) = 55.8+32.1 = 87.9g		
		m ass = n o. of mol × gfm = 0.00329mol × 87.9 g mol ⁻¹ = 0.289g		
14a(i)	synthesis gas	synthesis gas is a mixture of carbon monoxide and hydrogen, made by the		
		Steam reforming of methane or coal and can me used to make methanol. $O_{+} = O_{0} \rightarrow O_{0}$ $AH = -283 \text{ kT mol}^{-1}$		
		$\Theta \qquad H_2 + \frac{1}{2}O_2 \rightarrow H_2O \qquad \Delta H = -242 \text{ kJ mol}^{-1}$		
		CH4 + 2O2 → CO2 + 2H2O ΔH= -803 kJ mol-1 ΔH= -803 kJ mol-1		
14a(ii)	206	$2x-3 \qquad 3H_2O \rightarrow 3H_2 + 1\frac{1}{2}O_2 \qquad \Delta H = +726 \text{ kJ}$		
		$ CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \Delta H = -803 \text{ kJ} $		
		Add $CH_4 + H_2O \rightarrow CO + 3H_2 \qquad \Delta H = +206 \text{ kJ mol}^{-1}$		
		Forward reaction is exothermic		
116	decrease	decrease in temperature favours forward reaction		
14D	increase	Forward reaction reduces gas pressure (from 3mol to 1mol)		
		increase in pressure favours forward reaction		
		Total volume = 25cm³ KOH + 25cm³ = 50cm³ ∴ mass = 0.05kg		
		no of mol H ⁺ = volume x concentration = 0.025/itres x 1mol 1 ⁻¹ = 0.025mol		
		$H^+ + OH^- \longrightarrow H_2O$		
15a	-37.62	1mol 1mol		
		0.025mol 0.025mol		
		$0.025 \text{mol} H_2 O \longleftarrow 0.9405 \text{kJ}$		
		$= -37 62 \text{kJ} \text{ mol}^{-1}$		
	lles plastic sup on	The glass beaker will lose heat quicker than an insulted polystyrene cup. A		
15b	use a lid on beeken	lid with a hole in the top for the thermometer will also prevent some heat		
	use a na on Deaker	loss and improve the accuracy of the temperature readings.		
45	Initial temp of acid	temperatures of the acid and the alkali. The temperature will rise during the initial		
150	Initial temp of alkali	reaction and the final temperature is the highest temperature reached on the		
	rinal temp of mixture	thermometer.		
		Reduction is gain of electrons and electrons appear on LEFT of arrow.		
		$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$		
160	$T_{a} + 2a^{-} \rightarrow 2T^{-}$	Split up species into two half reactions		
100	$12 + 2e \rightarrow 21$	$25_2O_3^{2-} \rightarrow 5_4O_6^{2-}$		
		Balance each equation by adding electrons		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		The rough titration is used to work out the rough volume by adding around		
		1cm ³ at a time until the colour change is achieved. The experiment is then		
16h(i)	1^{st} titration is rough and	repeated by adding the majority of the rough titre volume in one go and		
100(1)	excluded from average	them adding small volumes from this point until the colour change is		
		achieved accurately. The experiment is repeated until concordancy is achieved (two or more volumes within 0.2cm ³ of each other).		

	0.0045375	n o. of mol $S_2O_3^{2^2}$ = volume x concentration = 0.01815 litres x 0.01 mol t ⁻¹ = 0.0001815 mol
16h		$I_2 + 2S_2O_3^{2-} \longrightarrow 2I^{-} + S_4O_6^{2-}$
		1mol 2mol
100(11)		0.00009075mol 0.0001815mol
		c oncentration = $\frac{\text{no. of mol}}{1} = \frac{0.00009075_{\text{mol}}}{2.22} = 0.0045375_{\text{mol}}$
		$\frac{\text{volume}}{\text{0.02litres}}$
		$Q = 1 \times 1 = 0.5 \times (2 \times 00 \times 00) = 30000$
		$PD + SO_4^- \longrightarrow PD^- SO_4^- + 2e$
17a	3.86	1mol 2mol
		207.2g 193000C
		= 3 86a
		Step 1: Write down main species in reaction
		$\overrightarrow{PbO_2}$ + SO_4^{2-} \rightarrow PbSO ₄
	-	<u>Step 2</u> : Balance all atoms other than O or H
	PbO2+SO4 ²⁻ +4H ⁺ +2e ⁻ ↓ PbSO4 + 2H2O	$PbO_2 + SO_4^{2-} \rightarrow PbSO_4$
17h		<u>Step 3</u> : Balance O atoms by adding H ₂ O to the other side
170		$PDU_2 + SU_4^- \longrightarrow PDSU_4 + 2H_2U$ Step 4: Balance H atoms by adding H^* to the other side
		$PbO_2 + SO_4^{2-} + 4H^+ \rightarrow PbSO_4 + 2H_2O$
		<u>Step 5</u> : Balance charge by adding electrons to the most positive side
		PbO_2 + SO_4^{2-} + $4H^+$ + $2e^- \rightarrow PbSO_4$ + $2H_2O$
		н сн _з
		Any ring structure with two CH_3
18a	Diagram showing:	groups both pointing up or both
		pointing down
		 H H
18b(i)	Larger the group	
	the larger the	The larger the atom (H <r </r (Br) the larger the steric strain $f(C \cup C)$
	steric strain	The larger the group the larger the steric strain e.g. CP3 < (CP3)3C
18b(ii)	7.8	Steric Strain = 2 x steric strain between H and CH_3 = 2 x 3.8 = 7.6